THE ALGEBRAIC GOODWILLIE TOWER

GUOZHEN WANG

1. THE DUAL LAMBDA ALCGEBRA

We will use Singer’s dual lambda algerba introduced in [6]

Let GLs = GL4(Fq) act on Fafty,...,ts] in the natural way. We have
the subgroup Bs C GLs of upper triangular matrices. Then by [5] the
Bs-invariants in Fa[t,...,ts] in a polynomial algebra with generators

Vi = [J(aats + - + ap—rtio1 + ti)

for k=1,...,s, where the product is over all choices a; € Fs.

Let Dy = Vi1V5...Vy be the Dickson invariant, which is an invariant of
GLs. Then GL; also acts on Faltq,...,ts, D7!]. We define A, to be its B,-
invariants and I'y to be its G Ls-invariants. One finds Ag = Fy [Vli, L VE]L

Define another set of generators of A; to be v, = Vl--‘-/‘l;k—l' Let A7 to be

the span of the elements of the form v ...v% in which at least one of the
i; <0. Let I'y =T, NA;, and T'f =T, /T;.

Let A = ®A;, ' =@l's and I'" = @I'], etc.

Define 05 : Ay — As_1 to be the map Res,,, which takes the coefficient
before v 1. Tt is proved in [6] that the restriction of d to I' makes T into a
complex, and I'" is a direct sumand of I" as a complex.

There is a coproduct ¢ on A defined by ¥, 4 : Aprq = Ap A, where ¥y, 4
is an algebra isomorphism sending v; to v; ® 1 for « < p and to 1 ® v;_,, for
i > p. It is proved in [6] that T is a subcoalgebra of A and I'" is a quotient
coalgebra of T'.

It is proved in [6] that Tt is dual to the lambda algebra, with vi! ... v
dual to )‘is . )‘il'

2. THE HECKE ALGEBRA

We recall the basics of the mod 2 Hecke algebra in this section, following
[2] and [3].

Let Hs be the mod 2 Hecke algebra. It has a set of basis {T),} for w
running through the Weyl group W,. H, acts on the Bs-invariants in any
G Lg-module such that T, acts as Bsw € Fy[GLs]. As an algebra, H is
generated by Ty, for : =1,...,s—1, where w; is the transposition of the ith
and (i + 1) element in the canonical basis of F§. We also define e; = T},
where wg inverts the order of the elements in the canonical basis. Let é5 =
ZwGWs T.w. Both es and é, are idempotents mod 2. For any GLs;-module
M, we can identify its GL, invariants with é,MBs. We can also identify (or
define) its Steinberg sumand to be esMPBs,
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Proposition 1. The generators Ty, satisfy the following relations mod 2,
and these relations define Hs:

(1) T2, = Ty,

(2) Ty Twz+1T =Ty Tw; T, -

(3) Tw;Tw; = Tw;Tw, forli—j| > 2.

From this proposition, we can define a map Hs ® Hy — Hsy¢ by sending
Ty, ®1 to Ty, and 1 ® Ty, to Ty,41+i- Define e, és € Hsyy to be the image
of 1 ® e; and é; ® 1 of this map respectively.

More generally, define e; ; to be the image of 1 ® e;4+1—; ® 1 under the
map H;—1 @ Hjiy1 @ Hs—i—j — Hs

Proposition 2. The elements e; and é; in Hsyy satisfy the following rela-
tions:

(1

||
@)

) et
(2) e:etelforz<t
(3) é;65 = é5 = é5¢; fori < s.
(4) €seir16s + €1€sr16 = Eg6y.

Define Twi =14+Ty,.
Proposition 3. In H, we have
(1) T, és = és = 5Ty,
(2) é9 = I;wl. )
(3) éx =T, ... Ty, Ek—1-

@@

+€s
i€t

In the following we will abbreviate T,,, by T;, etc.

Now specialize to the case A;. Hy acts on Ag, and one can identify 'y as
ésAg. The map v, , preserves the action of H, ® H,. The map Os preserves
the action of Hs_1.

3. THE COMPLEXES L(n)

In this section, we define complexes £(n) which are isomorphic to the
dual of A-modules of the spectra L(n).

Define L£(n)s = és_nenAs for s > n and L(n)s = 0 for s < n. Define the
differential by the formula 9. : £(n)s — L(n)s—1 to be

Os(z) = Resy, (To—1 ... Ts—nx)
for any x € L(n)s C As.
Proposition 4. The map &' lands in L(n).

Proof. 1t is trivial to check é5_,,_ 1TS 1. TS nl = Ts 1. TS n. To com-
plete the proof, it remains to check the equatlons TkT v 1. Ts_pz =0 for
k=s—mn,...,s — 2. This can be done with the commutatlon relations of
the T;’s. Flrst we can transform the expression by moving T}, rightward
to arrive at the expressmn Ts 1- TkaHTk Ts_pz. Using the braid re-
lation, this equals Ty q. Tk+1Tka+1 Ty ni- Then we move the right
Tk+1 further rightward, and end with Ts_l .. -Tk+1Tk .. .TS_nTka. Finally
observeTkHw:Ofork:s—n,...,s—l. O

Define L(n)F = L(n)s/L(n)s N A™.
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Theorem 1. The map 0 satisfies > = 0. Moreover, L(n)" is isomorphic
to the dual of A-modules of the spectra L(n).

Proof. The first assertion is a consequence of Proposition 3.1 in [6], which
implies 0? restricted to the image of T, 1 is zero, provided we can show any
expression T_o ... Ts_p_1Ts_1...Ts_px can be transformed into an expres-
sion starting with T s—1. To do this, first move Ts,n,1 rightward to arrive at
the expression TS_Q .. .TS_nTS_l .. .Ts_n_lfs_nx. We know =z = Ts_n_la:.
So Tsn1Tsnz =TsnTsn1Ts—nz. SO We get an expression starting with
TS_Q .. .TS_nTS_l .. .Ts_n+1TS_n. Then an induction completes the proof.
The second assertion can be proved by comparing with the formula of
the action of the Steenrod algebra on H*(L(n)) described in [1] using the
Nishida relations. U

4. THE KUHN-PRIDDY MAP AND THE TRANSFER MAP

We define the Kuhn-Priddy map s, : £(n + 1) — L(n) by the formula
sp(x) = és_px for x € L(n + 1)s.

Proposition 5. The map s, is a map of complexes.
Proof. Let x € L(n + 1)s. Then
 (sp(z)) = ResvSTs,l AR
We have x = é5_,,_12, and é5_,, = €5_p_1T5_p_1€5—n—_1, SO
kal .. -Tws,nés—niﬁ = és_n_1TS_1 .. .Ts_n_lx

because é5_,,_1 commutes with Ts,n, ce, T 1.
On the other hand, we have
sp(0'2) = Resy s n1Ts 1...Ts_n_17

O

Similarly, we define the transfer map d,, : £(n) — L£(n+1) by the formula
dn(x) = epq12 for x € L(n + 1)s.

Proposition 6. The map d, is a map of complezes.
Proof. Let x € L(n)s. Then
0 (dn(x)) = ResUSTS_l .. .Ts_n_16n+1(17

We have e, 11 = e + epTs_ney, and epyx =2 =Ts_,_12. So

Te1... Ts—n—len—l—lm =T .. Ts_px+Ts1...Ts_pn1e,Ts_pnx

Because e,, commutes with Ts_,,_1, we have

A~

Ts 1. Ts paenTs pr =T 1...Ts_pepyTs pn1Ts pnx
On the other hand, we have

d,(0'z) = Resvses_n_l,s_lfs_l T
We have

€s—n—1,5—1 = €s—n,s—1 T+ es—n,s—lTs—n—les—n,s—l
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From the proof of Theorem 1, we know

es—n,s—lTs—l . -Ts—nx = Ts—l e Ts_nl'
So
esfnfl,sflj—‘sfl cee Tsfnl‘ = Tsfl cee Tsfnl' + esfn,sflfsfnflf’sfl cee Tsfnl'
We also have
6s—n,s—lCZAjs—n—lTs—l Ty pr = es—n,s—lTs—l Ty n1Ts 1T nx
Then an induction on n proves the proposition once we notice

en-1Ts—n-1Ts—nr = Ts—pn-1Ts—nT

The following is a direct consequence of the formula
€ser16s + erlsii6r = €56y
Proposition 7. We have d,s,, + Sp—1dn_1 = 1.

This is consistent with the algebraic Whitehead conjecture proved in [4].

REFERENCES

[1] Mark Behrens. The Goodwillie tower and the EHP sequence. Mem. Amer. Math. Soc.,
218(1026):xii+90, 2012.

[2] Nicholas J. Kuhn. Chevalley group theory and the transfer in the homology of sym-
metric groups. Topology, 24(3):247-264, 1985.

[3] Nicholas J. Kuhn and Stewart B. Priddy. The transfer and Whitehead’s conjecture.
Math. Proc. Cambridge Philos. Soc., 98(3):459-480, 1985.

[4] Haynes Miller. An algebraic analogue of a conjecture of G. W. Whitehead. Proc. Amer.
Math. Soc., 84(1):131-137, 1982.

[5] Huynh Mui. Modular invariant theory and cohomology algebras of symmetric groups.
J. Fac. Sci. Univ. Tokyo Sect. IA Math., 22(3):319-369, 1975.

[6] William M. Singer. Invariant theory and the lambda algebra. Trans. Amer. Math. Soc.,
280(2):673-693, 1983.



