THE ALGEBRAIC GOODWILLIE TOWER

GUOZHEN WANG

1. The dual lambda algebra

We will use Singer's dual lambda algerba introduced in [6] Let $GL_s = GL_s(\mathbb{F}_2)$ act on $\mathbb{F}_2[t_1, \ldots, t_s]$ in the natural way. We have the subgroup $B_s \subset GL_s$ of upper triangular matrices. Then by [5] the B_s -invariants in $\mathbb{F}_2[t_1,\ldots,t_s]$ in a polynomial algebra with generators

$$V_k = \prod (a_1 t_1 + \dots + a_{k-1} t_{k-1} + t_k)$$

for $k = 1, \ldots, s$, where the product is over all choices $a_i \in \mathbb{F}_2$.

Let $D_s = V_1 V_2 \dots V_s$ be the Dickson invariant, which is an invariant of GL_s . Then GL_s also acts on $\mathbb{F}_2[t_1, \ldots, t_s, D^{-1}]$. We define Δ_s to be its B_s -invariants and Γ_s to be its GL_s -invariants. One finds $\Delta_s = \mathbb{F}_s[V_1^{\pm}, \ldots, V_s^{\pm}]$. Define another set of generators of Δ_s to be $v_k = \frac{V_k}{V_1 \ldots V_{k-1}}$. Let Δ_s^- to be

the span of the elements of the form $v_1^{i_1} \dots v_s^{i_s}$ in which at least one of the $i_j < 0$. Let $\Gamma_s^- = \Gamma_s \cap \Delta_s^-$, and $\Gamma_s^+ = \Gamma_s / \Gamma_s^-$. Let $\Delta = \oplus \Delta_s$, $\Gamma = \oplus \Gamma_s$ and $\Gamma^+ = \oplus \Gamma_s^+$, etc.

Define $\partial_s : \Delta_s \to \Delta_{s-1}$ to be the map Res_{v_s} , which takes the coefficient before v_s^{-1} . It is proved in [6] that the restriction of ∂ to Γ makes Γ into a complex, and Γ^+ is a direct sum and of Γ as a complex.

There is a coproduct ψ on Δ defined by $\psi_{p,q}: \Delta_{p+q} \to \Delta_p \otimes \Delta_q$ where $\psi_{p,q}$ is an algebra isomorphism sending v_i to $v_i \otimes 1$ for $i \leq p$ and to $1 \otimes v_{i-p}$ for i > p. It is proved in [6] that Γ is a subcoalgebra of Δ and Γ^+ is a quotient coalgebra of Γ .

It is proved in [6] that Γ^+ is dual to the lambda algebra, with $v_1^{i_1} \dots v_s^{i_s}$ dual to $\lambda_{i_s} \dots \lambda_{i_1}$.

2. The Hecke Algebra

We recall the basics of the mod 2 Hecke algebra in this section, following |2| and |3|.

Let \mathcal{H}_s be the mod 2 Hecke algebra. It has a set of basis $\{T_w\}$ for w running through the Weyl group W_s . \mathcal{H}_s acts on the B_s -invariants in any GL_s -module such that T_w acts as $B_s w \in \mathbb{F}_2[GL_s]$. As an algebra, \mathcal{H}_s is generated by T_{w_i} for $i = 1, \ldots, s - 1$, where w_i is the transposition of the i^{th} and $(i+1)^{st}$ element in the canonical basis of \mathbb{F}_2^s . We also define $e_s = T_{w_0}$ where w_0 inverts the order of the elements in the canonical basis. Let $\hat{e}_s =$ $\sum_{w \in W_s} T_w$. Both e_s and \hat{e}_s are idempotents mod 2. For any GL_s -module M, we can identify its GL_s invariants with $\hat{e}_s M^{B_s}$. We can also identify (or define) its Steinberg sumand to be $e_s M^{B_s}$.

Proposition 1. The generators T_{w_i} satisfy the following relations mod 2, and these relations define \mathcal{H}_s :

- (1) $T_{w_i}^2 = T_{w_i}$. (2) $T_{w_i}T_{w_{i+1}}T_{w_i} = T_{w_{i+1}}T_{w_i}T_{w_{i+1}}$. (3) $T_{w_i}T_{w_j} = T_{w_j}T_{w_i} \text{ for } |i-j| \ge 2$.

From this proposition, we can define a map $\mathcal{H}_s \otimes \mathcal{H}_t \to \mathcal{H}_{s+t}$ by sending $T_{w_i} \otimes 1$ to T_{w_i} and $1 \otimes T_{w_i}$ to T_{w_s+1+i} . Define $e_t, \hat{e}_s \in \mathcal{H}_{s+t}$ to be the image of $1 \otimes e_t$ and $\hat{e}_s \otimes 1$ of this map respectively.

More generally, define $e_{i,j}$ to be the image of $1 \otimes e_{j+1-i} \otimes 1$ under the map $\mathcal{H}_{i-1} \otimes \mathcal{H}_{j-i+1} \otimes \mathcal{H}_{s-i-j} \to \mathcal{H}_s$

Proposition 2. The elements e_i and \hat{e}_i in \mathcal{H}_{s+t} satisfy the following relations:

- (1) $e_t \hat{e}_s = \hat{e}_s e_t$.
- (2) $e_i e_t = e_t = e_t e_i$ for $i \leq t$.
- (3) $\hat{e}_i\hat{e}_s = \hat{e}_s = \hat{e}_s\hat{e}_i$ for $i \leq s$.
- (4) $\hat{e}_s e_{t+1} \hat{e}_s + e_t \hat{e}_{s+1} e_t = \hat{e}_s e_t.$

Define $\hat{T}_{w_i} = 1 + T_{w_i}$.

Proposition 3. In \mathcal{H}_s , we have

- (1) $\hat{T}_{w_i}\hat{e}_s = \hat{e}_s = \hat{e}_s\hat{T}_{w_i}$.
- (2) $\hat{e}_2 = \hat{T}_{w_1}$.
- (3) $\hat{e}_k = \hat{T}_{w_1} \dots \hat{T}_{w_{k-1}} \hat{e}_{k-1}.$

In the following we will abbreviate T_{w_i} by T_i , etc.

Now specialize to the case Δ_s . \mathcal{H}_s acts on Δ_s , and one can identify Γ_s as $\hat{e}_s \Delta_s$. The map $\psi_{p,q}$ preserves the action of $\mathcal{H}_p \otimes \mathcal{H}_q$. The map ∂_s preserves the action of \mathcal{H}_{s-1} .

3. The complexes $\mathcal{L}(n)$

In this section, we define complexes $\mathcal{L}(n)$ which are isomorphic to the dual of Λ -modules of the spectra L(n).

Define $\mathcal{L}(n)_s = \hat{e}_{s-n} e_n \Delta_s$ for $s \ge n$ and $\mathcal{L}(n)_s = 0$ for s < n. Define the differential by the formula $\partial'_s : \mathcal{L}(n)_s \to \mathcal{L}(n)_{s-1}$ to be

$$\partial_s(x)' = \operatorname{Res}_{v_s}(\hat{T}_{s-1}\dots\hat{T}_{s-n}x)$$

for any $x \in \mathcal{L}(n)_s \subset \Delta_s$.

Proposition 4. The map ∂' lands in $\mathcal{L}(n)$.

Proof. It is trivial to check $\hat{e}_{s-n-1}\hat{T}_{s-1}\dots\hat{T}_{s-n}x = \hat{T}_{s-1}\dots\hat{T}_{s-n}x$. To complete the proof, it remains to check the equations $\hat{T}_k \hat{T}_{s-1} \dots \hat{T}_{s-n} x = 0$ for $k = s - n, \ldots, s - 2$. This can be done with the commutation relations of the T_i 's. First we can transform the expression by moving T_k rightward to arrive at the expression $T_{s-1} \dots T_k T_{k+1} T_k \dots T_{s-n} x$. Using the braid relation, this equals $\hat{T}_{s-1} \dots \hat{T}_{k+1} \hat{T}_k \hat{T}_{k+1} \dots \hat{T}_{s-n} x$. Then we move the right \hat{T}_{k+1} further rightward, and end with $\hat{T}_{s-1} \dots \hat{T}_{k+1} \hat{T}_k \dots \hat{T}_{s-n} \hat{T}_{k+1} x$. Finally observe $T_{k+1}x = 0$ for k = s - n, ..., s - 1. \square

Define $\mathcal{L}(n)_s^+ = \mathcal{L}(n)_s / \mathcal{L}(n)_s \cap \Delta^-$.

Theorem 1. The map ∂' satisfies $\partial'^2 = 0$. Moreover, $\mathcal{L}(n)^+$ is isomorphic to the dual of Λ -modules of the spectra L(n).

Proof. The first assertion is a consequence of Proposition 3.1 in [6], which implies ∂_s^2 restricted to the image of \hat{T}_{s-1} is zero, provided we can show any expression $\hat{T}_{s-2} \dots \hat{T}_{s-n-1} \hat{T}_{s-1} \dots \hat{T}_{s-n} x$ can be transformed into an expression starting with \hat{T}_{s-1} . To do this, first move \hat{T}_{s-n-1} rightward to arrive at the expression $\hat{T}_{s-2} \dots \hat{T}_{s-n} \hat{T}_{s-1} \dots \hat{T}_{s-n-1} \hat{T}_{s-n} x$. We know $x = \hat{T}_{s-n-1} x$. So $\hat{T}_{s-n-1} \hat{T}_{s-n} x = \hat{T}_{s-n} \hat{T}_{s-n-1} \hat{T}_{s-n} x$. So we get an expression starting with $\hat{T}_{s-2} \dots \hat{T}_{s-n} \hat{T}_{s-1} \dots \hat{T}_{s-n+1} \hat{T}_{s-n}$. Then an induction completes the proof.

The second assertion can be proved by comparing with the formula of the action of the Steenrod algebra on $H^*(L(n))$ described in [1] using the Nishida relations.

4. The Kuhn-Priddy map and the transfer map

We define the Kuhn-Priddy map $s_n : \mathcal{L}(n+1) \to \mathcal{L}(n)$ by the formula $s_n(x) = \hat{e}_{s-n}x$ for $x \in \mathcal{L}(n+1)_s$.

Proposition 5. The map s_n is a map of complexes.

Proof. Let $x \in \mathcal{L}(n+1)_s$. Then

$$\partial'(s_n(x)) = Res_{v_s}\hat{T}_{s-1}\dots\hat{T}_{s-n}\hat{e}_{s-n}x$$

We have $x = \hat{e}_{s-n-1}x$, and $\hat{e}_{s-n} = \hat{e}_{s-n-1}T_{s-n-1}\hat{e}_{s-n-1}$, so

$$\hat{T}_{w_{s-1}}\dots\hat{T}_{w_{s-n}}\hat{e}_{s-n}x = \hat{e}_{s-n-1}\hat{T}_{s-1}\dots\hat{T}_{s-n-1}x$$

because \hat{e}_{s-n-1} commutes with $\hat{T}_{s-n}, \ldots, \hat{T}_{s-1}$.

On the other hand, we have

$$s_n(\partial' x) = Res_{v_s}\hat{e}_{s-n-1}T_{s-1}\dots T_{s-n-1}$$

Similarly, we define the transfer map $d_n : \mathcal{L}(n) \to \mathcal{L}(n+1)$ by the formula $d_n(x) = e_{n+1}x$ for $x \in \mathcal{L}(n+1)_s$.

Proposition 6. The map d_n is a map of complexes.

Proof. Let $x \in \mathcal{L}(n)_s$. Then

$$\partial'(d_n(x)) = \operatorname{Res}_{v_s} \hat{T}_{s-1} \dots \hat{T}_{s-n-1} e_{n+1} x$$

We have $e_{n+1} = e_n + e_n \hat{T}_{s-n} e_n$, and $e_n x = x = \hat{T}_{s-n-1} x$. So

$$\hat{T}_{s-1}\dots\hat{T}_{s-n-1}e_{n+1}x = \hat{T}_{s-1}\dots\hat{T}_{s-n}x + \hat{T}_{s-1}\dots\hat{T}_{s-n-1}e_n\hat{T}_{s-n}x$$

Because e_n commutes with T_{s-n-1} , we have

$$\hat{T}_{s-1}\dots\hat{T}_{s-n-1}e_n\hat{T}_{s-n}x = \hat{T}_{s-1}\dots\hat{T}_{s-n}e_n\hat{T}_{s-n-1}\hat{T}_{s-n}x$$

On the other hand, we have

$$d_n(\partial' x) = Res_{v_s} e_{s-n-1,s-1} \hat{T}_{s-1} \dots \hat{T}_{s-n} x$$

We have

$$e_{s-n-1,s-1} = e_{s-n,s-1} + e_{s-n,s-1}T_{s-n-1}e_{s-n,s-1}$$

From the proof of Theorem 1, we know

$$e_{s-n,s-1}\hat{T}_{s-1}\dots\hat{T}_{s-n}x=\hat{T}_{s-1}\dots\hat{T}_{s-n}x$$

 So

 $e_{s-n-1,s-1}\hat{T}_{s-1}\dots\hat{T}_{s-n}x = \hat{T}_{s-1}\dots\hat{T}_{s-n}x + e_{s-n,s-1}\hat{T}_{s-n-1}\hat{T}_{s-1}\dots\hat{T}_{s-n}x$ We also have

$$e_{s-n,s-1}\hat{T}_{s-n-1}\hat{T}_{s-1}\dots\hat{T}_{s-n}x = e_{s-n,s-1}\hat{T}_{s-1}\dots\hat{T}_{s-n+1}\hat{T}_{s-n-1}\hat{T}_{s-n}x$$

Then an induction on n proves the proposition once we notice

$$e_{n-1}\tilde{T}_{s-n-1}\tilde{T}_{s-n}x = \tilde{T}_{s-n-1}\tilde{T}_{s-n}x$$

The following is a direct consequence of the formula

$$\hat{e}_s e_{t+1}\hat{e}_s + e_t\hat{e}_{s+1}e_t = \hat{e}_s e_t$$

Proposition 7. We have $d_n s_n + s_{n-1} d_{n-1} = 1$.

This is consistent with the algebraic Whitehead conjecture proved in [4].

References

- Mark Behrens. The Goodwillie tower and the EHP sequence. Mem. Amer. Math. Soc., 218(1026):xii+90, 2012.
- [2] Nicholas J. Kuhn. Chevalley group theory and the transfer in the homology of symmetric groups. *Topology*, 24(3):247-264, 1985.
- [3] Nicholas J. Kuhn and Stewart B. Priddy. The transfer and Whitehead's conjecture. Math. Proc. Cambridge Philos. Soc., 98(3):459–480, 1985.
- [4] Haynes Miller. An algebraic analogue of a conjecture of G. W. Whitehead. Proc. Amer. Math. Soc., 84(1):131–137, 1982.
- [5] Huỳnh Mui. Modular invariant theory and cohomology algebras of symmetric groups. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 22(3):319–369, 1975.
- [6] William M. Singer. Invariant theory and the lambda algebra. Trans. Amer. Math. Soc., 280(2):673–693, 1983.