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1. The dual lambda algebra

We will use Singer’s dual lambda algerba introduced in [6]
Let GLs = GLs(F2) act on F2[t1, . . . , ts] in the natural way. We have

the subgroup Bs ⊂ GLs of upper triangular matrices. Then by [5] the
Bs-invariants in F2[t1, . . . , ts] in a polynomial algebra with generators

Vk =
∏

(a1t1 + · · ·+ ak−1tk−1 + tk)

for k = 1, . . . , s, where the product is over all choices ai ∈ F2.
Let Ds = V1V2 . . . Vs be the Dickson invariant, which is an invariant of

GLs. Then GLs also acts on F2[t1, . . . , ts, D
−1]. We define ∆s to be its Bs-

invariants and Γs to be its GLs-invariants. One finds ∆s = Fs[V
±
1 , . . . , V

±
s ].

Define another set of generators of ∆s to be vk = Vk
V1...Vk−1

. Let ∆−s to be

the span of the elements of the form vi11 . . . v
is
s in which at least one of the

ij < 0. Let Γ−s = Γs ∩∆−s , and Γ+
s = Γs/Γ

−
s .

Let ∆ = ⊕∆s, Γ = ⊕Γs and Γ+ = ⊕Γ+
s , etc.

Define ∂s : ∆s → ∆s−1 to be the map Resvs , which takes the coefficient
before v−1s . It is proved in [6] that the restriction of ∂ to Γ makes Γ into a
complex, and Γ+ is a direct sumand of Γ as a complex.

There is a coproduct ψ on ∆ defined by ψp,q : ∆p+q → ∆p⊗∆q where ψp,q

is an algebra isomorphism sending vi to vi ⊗ 1 for i ≤ p and to 1⊗ vi−p for
i > p. It is proved in [6] that Γ is a subcoalgebra of ∆ and Γ+ is a quotient
coalgebra of Γ.

It is proved in [6] that Γ+ is dual to the lambda algebra, with vi11 . . . v
is
s

dual to λis . . . λi1 .

2. The Hecke algebra

We recall the basics of the mod 2 Hecke algebra in this section, following
[2] and [3].

Let Hs be the mod 2 Hecke algebra. It has a set of basis {Tw} for w
running through the Weyl group Ws. Hs acts on the Bs-invariants in any
GLs-module such that Tw acts as Bsw ∈ F2[GLs]. As an algebra, Hs is
generated by Twi for i = 1, . . . , s−1, where wi is the transposition of the ith

and (i + 1)st element in the canonical basis of Fs
2. We also define es = Tw0

where w0 inverts the order of the elements in the canonical basis. Let ês =∑
w∈Ws

Tw. Both es and ês are idempotents mod 2. For any GLs-module

M , we can identify its GLs invariants with êsM
Bs . We can also identify (or

define) its Steinberg sumand to be esM
Bs .
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Proposition 1. The generators Twi satisfy the following relations mod 2,
and these relations define Hs:

(1) T 2
wi

= Twi.
(2) TwiTwi+1Twi = Twi+1TwiTwi+1.
(3) TwiTwj = TwjTwi for |i− j| ≥ 2.

From this proposition, we can define a map Hs ⊗Ht → Hs+t by sending
Twi ⊗ 1 to Twi and 1⊗ Twi to Tws+1+i. Define et, ês ∈ Hs+t to be the image
of 1⊗ et and ês ⊗ 1 of this map respectively.

More generally, define ei,j to be the image of 1 ⊗ ej+1−i ⊗ 1 under the
map Hi−1 ⊗Hj−i+1 ⊗Hs−i−j → Hs

Proposition 2. The elements ei and êi in Hs+t satisfy the following rela-
tions:

(1) etês = êset.
(2) eiet = et = etei for i ≤ t.
(3) êiês = ês = êsêi for i ≤ s.
(4) êset+1ês + etês+1et = êset.

Define T̂wi = 1 + Twi .

Proposition 3. In Hs, we have

(1) T̂wi ês = ês = êsT̂wi.

(2) ê2 = T̂w1.

(3) êk = T̂w1 . . . T̂wk−1
êk−1.

In the following we will abbreviate Twi by Ti, etc.
Now specialize to the case ∆s. Hs acts on ∆s, and one can identify Γs as

ês∆s. The map ψp,q preserves the action of Hp⊗Hq. The map ∂s preserves
the action of Hs−1.

3. The complexes L(n)

In this section, we define complexes L(n) which are isomorphic to the
dual of Λ-modules of the spectra L(n).

Define L(n)s = ês−nen∆s for s ≥ n and L(n)s = 0 for s < n. Define the
differential by the formula ∂′s : L(n)s → L(n)s−1 to be

∂s(x)′ = Resvs(T̂s−1 . . . T̂s−nx)

for any x ∈ L(n)s ⊂ ∆s.

Proposition 4. The map ∂′ lands in L(n).

Proof. It is trivial to check ês−n−1T̂s−1 . . . T̂s−nx = T̂s−1 . . . T̂s−nx. To com-

plete the proof, it remains to check the equations T̂kT̂s−1 . . . T̂s−nx = 0 for
k = s − n, . . . , s − 2. This can be done with the commutation relations of
the Ti’s. First we can transform the expression by moving Tk rightward
to arrive at the expression T̂s−1 . . . T̂kT̂k+1T̂k . . . T̂s−nx. Using the braid re-

lation, this equals T̂s−1 . . . T̂k+1T̂kT̂k+1 . . . T̂s−nx. Then we move the right

T̂k+1 further rightward, and end with T̂s−1 . . . T̂k+1T̂k . . . T̂s−nT̂k+1x. Finally

observe T̂k+1x = 0 for k = s− n, . . . , s− 1. �

Define L(n)+s = L(n)s/L(n)s ∩∆−.
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Theorem 1. The map ∂′ satisfies ∂′2 = 0. Moreover, L(n)+ is isomorphic
to the dual of Λ-modules of the spectra L(n).

Proof. The first assertion is a consequence of Proposition 3.1 in [6], which

implies ∂2s restricted to the image of T̂s−1 is zero, provided we can show any

expression T̂s−2 . . . T̂s−n−1T̂s−1 . . . T̂s−nx can be transformed into an expres-

sion starting with T̂s−1. To do this, first move T̂s−n−1 rightward to arrive at

the expression T̂s−2 . . . T̂s−nT̂s−1 . . . T̂s−n−1T̂s−nx. We know x = T̂s−n−1x.

So T̂s−n−1T̂s−nx = T̂s−nT̂s−n−1T̂s−nx. So we get an expression starting with

T̂s−2 . . . T̂s−nT̂s−1 . . . T̂s−n+1T̂s−n. Then an induction completes the proof.
The second assertion can be proved by comparing with the formula of

the action of the Steenrod algebra on H∗(L(n)) described in [1] using the
Nishida relations. �

4. The Kuhn-Priddy map and the transfer map

We define the Kuhn-Priddy map sn : L(n + 1) → L(n) by the formula
sn(x) = ês−nx for x ∈ L(n+ 1)s.

Proposition 5. The map sn is a map of complexes.

Proof. Let x ∈ L(n+ 1)s. Then

∂′(sn(x)) = Resvs T̂s−1 . . . T̂s−nês−nx

We have x = ês−n−1x, and ês−n = ês−n−1Ts−n−1ês−n−1, so

T̂ws−1 . . . T̂ws−n ês−nx = ês−n−1T̂s−1 . . . T̂s−n−1x

because ês−n−1 commutes with T̂s−n, . . . , T̂s−1.
On the other hand, we have

sn(∂′x) = Resvs ês−n−1T̂s−1 . . . T̂s−n−1x

�

Similarly, we define the transfer map dn : L(n)→ L(n+1) by the formula
dn(x) = en+1x for x ∈ L(n+ 1)s.

Proposition 6. The map dn is a map of complexes.

Proof. Let x ∈ L(n)s. Then

∂′(dn(x)) = Resvs T̂s−1 . . . T̂s−n−1en+1x

We have en+1 = en + enT̂s−nen, and enx = x = T̂s−n−1x. So

T̂s−1 . . . T̂s−n−1en+1x = T̂s−1 . . . T̂s−nx+ T̂s−1 . . . T̂s−n−1enT̂s−nx

Because en commutes with T̂s−n−1, we have

T̂s−1 . . . T̂s−n−1enT̂s−nx = T̂s−1 . . . T̂s−nenT̂s−n−1T̂s−nx

On the other hand, we have

dn(∂′x) = Resvses−n−1,s−1T̂s−1 . . . T̂s−nx

We have

es−n−1,s−1 = es−n,s−1 + es−n,s−1T̂s−n−1es−n,s−1
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From the proof of Theorem 1, we know

es−n,s−1T̂s−1 . . . T̂s−nx = T̂s−1 . . . T̂s−nx

So

es−n−1,s−1T̂s−1 . . . T̂s−nx = T̂s−1 . . . T̂s−nx+ es−n,s−1T̂s−n−1T̂s−1 . . . T̂s−nx

We also have

es−n,s−1T̂s−n−1T̂s−1 . . . T̂s−nx = es−n,s−1T̂s−1 . . . T̂s−n+1T̂s−n−1T̂s−nx

Then an induction on n proves the proposition once we notice

en−1T̂s−n−1T̂s−nx = T̂s−n−1T̂s−nx

�

The following is a direct consequence of the formula

êset+1ês + etês+1et = êset

Proposition 7. We have dnsn + sn−1dn−1 = 1.

This is consistent with the algebraic Whitehead conjecture proved in [4].
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